Augmentation of angiotensinogen expression in the proximal tubule by intracellular angiotensin II via AT1a/MAPK/NF-кB signaling pathways.
نویسندگان
چکیده
Long-term angiotensin II (ANG II) infusion significantly increases ANG II levels in the kidney through two major mechanisms: AT1 receptor-mediated augmentation of angiotensinogen (AGT) expression and uptake of circulating ANG II by the proximal tubules. However, it is not known whether intracellular ANG II stimulates AGT expression in the proximal tubule. In the present study, we overexpressed an intracellular cyan fluorescent ANG II fusion protein (Ad-sglt2-ECFP/ANG II) selectively in the proximal tubule of rats and mice using the sodium and glucose cotransporter 2 (sglt2) promoter. AGT mRNA and protein expression in the renal cortex and 24-h urinary AGT excretion were determined 4 wk following overexpression of ECFP/ANG II in the proximal tubule. Systolic blood pressure was significantly increased with a small antinatriuretic effect in rats and mice with proximal tubule-selective expression of ECFP/ANG II (P < 0.01). AGT mRNA and protein expression in the cortex were increased by >1.5-fold and 61 ± 16% (P < 0.05), whereas urinary AGT excretion was increased from 48.7 ± 5.7 (n = 13) to 102 ± 13.5 (n = 13) ng/24 h (P < 0.05). However, plasma AGT, renin activity, and ANG II levels remained unaltered by ECFP/ANG II. The increased AGT mRNA and protein expressions in the cortex by ECFP/ANG II were blocked in AT1a-knockout (KO) mice. Studies in cultured mouse proximal tubule cells demonstrated involvement of AT1a receptor/MAP kinases/NF-кB signaling pathways. These results indicate that intracellular ANG II stimulates AGT expression in the proximal tubules, leading to increased AGT formation and secretion into the tubular fluid, which contributes to ANG II-dependent hypertension.
منابع مشابه
Novel signaling mechanisms of intracellular angiotensin II-induced NHE3 expression and activation in mouse proximal tubule cells.
Expression of a cytosolic cyan fluorescent fusion protein of angiotensin II (ECFP/ANG II) in proximal tubules increases blood pressure in rodents. To determine cellular signaling pathways responsible for this response, we expressed ECFP/ANG II in transport-competent mouse proximal convoluted tubule cells (mPCT) from wild-type (WT) and type 1a ANG II receptor-deficient (AT(1a)-KO) mice and measu...
متن کاملROCK/NF-κB axis-dependent augmentation of angiotensinogen by angiotensin II in primary-cultured preglomerular vascular smooth muscle cells.
In angiotensin II (ANG II)-dependent hypertension, the augmented intrarenal ANG II constricts the renal microvasculature and stimulates Rho kinase (ROCK), which modulates vascular contractile responses. Rho may also stimulate angiotensinogen (AGT) expression in preglomerular vascular smooth muscle cells (VSMCs), but this has not been established. Therefore, the aims of this study were to determ...
متن کاملAngiotensin (AT1A) receptor-mediated increases in transcellular sodium transport in proximal tubule cells.
Angiotensin II (ANG II), acting through angiotensin type 1A receptors (AT1A), is important in regulating proximal tubule salt and water balance. AT1A are present on apical (AP) and basolateral (BL) surfaces of proximal tubule epithelial cells (PTEC). The molecular mechanism of AT1A function in epithelial tissue is not well understood, because specific binding of ANG II to intact PTEC has not be...
متن کاملGene Expression Profile Analysis during Mouse Tooth Development
Introduction: Complex molecular pathways involve in development of different tissues such as teeth. Differential gene expression patterns during teeth development generates different tooth types. Teeth development results from interactions between oral epithelium and underlying ectomesenchyme cells with neural crest origin. Teeth development are regulated by different signaling networks. In thi...
متن کاملNephron-specific expression of components of the renin-angiotensin-aldosterone system in the mouse kidney.
INTRODUCTION The renin-angiotensin-aldosterone system (RAAS) plays an integral role in the regulation of blood pressure, electrolyte and fluid homeostasis in mammals. The capability of the different nephron segments to form components of the RAAS is only partially known. This study therefore aimed to characterize the nephron-specific expression of RAAS components within the mouse kidney. MATE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 310 10 شماره
صفحات -
تاریخ انتشار 2016